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A microscopic derivation is presented of the rate equations governing 
vibrational relaxation occurring in the optic-acoustic effect. Detailed ex- 
pressions applicable to the spectrophone experiment are given both for an 
excitation source consisting of a broadband radiation field and for laser- 
driven systems. It is clear from the present treatment that no real advantage 
accrues from the use of laser excitation sources in the standard spectrophone 
experiment, due to the resultant strong dependence of the driving force 
itself on the mechanical chopper frequency. For  broadband radiation field 
the dependence on the chopper frequency is removed and the standard result 
containing the Einstein coefficient of induced absorption is recovered. The 
spectrophone response for the simplest case of a two-level system is given 
explicitly and its similarity to phenomenologically derived expressions is 
pointed out. 

KEY W O R D S :  Kinetic theory; radiation-driven systems; rate equations; 
vibrational relaxation; optic-acoustic effect. 

The work of F.R.M. was supported in part  by a grant from the National Research Council 
of Canada. The work of A.T. was supported by the Foundation for Fundamental  
Research on Matter, which is sponsored by the Netherlands Organization for the 
Advancement of Pure Research. 

1 Chemistry Department,  University of Waterloo, Waterloo, Ontario, Canada. 
2 FOM Institute for Atomic and Molecular Physics, Amsterdam-Watergraafsmeer, The 

Netherlands. 

57 
�9 1973 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. 



58 F.R. McCourt and A. Tip 

1. I N T R O D U C T I O N  

Most theories dealing with vibrational relaxation in molecular gases are based 
on the assumption that the translational and rotational degrees of freedom 
remain in equilibrium. Such an assumption is satisfactory when the transfer 
of translational and rotational energy to the surroundings of the system of 
interest (the heat bath in which the system is immersed) takes place easily. 
Moreover, experiments are frequently performed under conditions which 
are such that a small change in the translational and rotational temperature 
plays only a minor role: This serves to extend the validity of the traditional 
approaches. However, for the optic-acoustic effect the situation is quite 
different. In this case a radiation source excites the molecules into one of 
their accessible vibrational states and this is followed by a deexcitation due 
to collisions, the net result being that energy is fed into the translational and 
rotational degrees of freedom. Should the gas be enclosed in a constant 
volume, this, in turn, leads to a rise in pressure. When the incident beam of 
radiation is chopped and the pressure fluctuations are monitored by means 
of a microphone, an apparatus is obtained (the so-called spectrophone) 
which allows the determination of the corresponding vibrational relaxation 
times. 

A theoretical description of such a phenomenon must contain the 
following two special features: 

1. A coupling between the gaseous system and the radiation field which 
describes the excitation of vibrational states by the radiation field. 

2. A coupling between the vibrational and translational-rotational 
degrees of freedom so that nonequilibrium pressure changes can be 
described. 

In all presently existing theories the first of these conditions is met by intro- 
ducing into a set of rate equations a production term containing the product 
BI  of an Einstein B-coefficient and the radiation density L The second feature 
is brought in by modeling the rate equations in a suitable way via the energy 
conservation law. Such an approach, although perhaps suff• for a 
phenomenological description, is less satisfactory from a microscopic point 
of view. For  instance, the interaction between the radiation field E and a 
molecule is described microscopically by the Hamiltonian - -~  "E, ~ being 
the dipole-moment operator of the molecule. This, compared with the presence 
of the term BI (which is proportional to E z) in the rate equations, would 
suggest that a microscopic theory should be carried through to second order 
in E. Further, the Einstein B-coefficient only occurs in connection with a 
sufficiently broadband radiation field (see, for instance, Ref. 1) thus excluding 
the description of laser-driven systems. The present work, which is based 
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on a suitable transport equation, (2) gives a microscopic derivation of the 
rate equations relevant for the description of the optic-acoustic effect. The 
resulting equations are applicable to both narrowband and broadband 
radiation fields. In the latter case the usual results containing the Einstein 
B-coefficient are recovered. Spontaneous radiation processes are not con- 
sidered since these effects are essentially beyond the range of the semMassical 
approach adopted here. 

2. BASIC E Q U A T I O N S  

If  the radiation field is sufficiently weak that saturation effects play no 
role, it is possible to expand the singlet density operator p about its equili- 
brium value p(0). Such will be assumed to be the case in this paper. In fact, 
rather than use p and p(o), it will be convenient to use the corresponding 
Wigner functions f and f(o): These quantities are Wigner functions as far 
as the translational degrees of freedom are concerned but remain operators 
in internal state space. 

Thus, the assumption of a weak radiation field a l lowsf to  be written as 

f = f l o )  + f r o ( t ) ,  f m  ~ f ( o )  (1) 

With this, the collision term in the transport equation (3) can be linearized and, 
in the impact approximation, the transport equation can be expressed as 

~ j m ( t  ) + iUextl(t) f m ( t  ) = j ( o ) ( f m ( t  ) _ fIo)fl~ . E(t)) 

__ iLm(fI1)(t  ) __ fIo)fl~ �9 E(t)) 

~-- , y ( f m ( t )  - -  f(o)fi~t " E(t)) (2) 
with 

LIextl(t)A = [--~t- E(t), A]_, L m A  = [H, A]_ (3) 

The symbol/3 has the usual significance,/3 ----- (kT)  -1, and H is the internal 
state Hamiltonian for a single molecule. The Kubo transform A of an 
operator A is defined as 

B 

.~ ~_ fl-1/o e~Ae-aI t  d)t (4) 

w h i l e J  I~ is the linearized collision operator, identical to that used in Ref. 3, 
except that here the emphasis is on the vibrational degrees of freedom rather 
than on the rotational ones. Actually, Eq. (2) is equivalent to Eq. (3.13) of 
Ref. 3 with f ro( t )  : f(~ +/3t2 �9 E(t) + q~(t)), with the understanding that 
in the present case f ro ( t )  is allowed to have nonvanishing matrix elements 
between states with different internal energies. The present form of j (0)  is 
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a reasonable approximation for the case where the internal energy levels are 
sufficiently split 1~,5) and the frequency oJ of the radiation field remains close 
to one of the vibrational transition frequencies co 0 of a molecule: i.e., 
l(eo -- COo) tint [ ~ 1, where the interaction time Tin~ stands for the average 
time that two particles interact during a binary collision. Outside this 
frequency region j(0~ is still dominant but frequency-dependent corrections 
to this collision operator start to build up. This could be important should 
a precise investigation of the wings of a spectral line be desired but it is not 
very significant for the present problem, where the field merely acts as a 
means of populating vibrational levels. 

It should be noted that Eq. (2) as it stands refers to a spatially homo- 
geneous system: Generalization to inhomogeneous systems is straightforward 
but will not be considered here. The Wigner func t ions fandf  101 are normalized 
according to 

t r f  = t r f  ~~ = n, t r f  m = 0 (5) 

where n is the number density. The symbol tr indicates a trace over the 
internal states and an integration over linear momentum. Let A~ be an 
(internal state) operator with the property that it has nonvanishing matrix 
elements between states ~ and /3 with energy difference e ) ~ -  ~oe = co 
(in units of h) only. Then jc0~ has the property that A~ is mapped into a 
quantity B = J(~ of the same type, i.e., B = Bo~. Formally, 

J(~ = (J(~ ," o. o~,r176 = do~o~r176 8(co, co') (6) 

[8(a, b) is the Kronecker delta]. It will be assumed in the sequel that matrix 
elements of ~ between states with the same energy vanish. This is obviously 
not the case for molecules possessing a permanent dipole moment which is 
not perpendicular to the molecular rotational angular momentum (e.g., 
symmetric-top molecules). However, for such molecules the corresponding 
effect, a possible redistribution of the occupation probability over the 
degenerate substates of an internal energy level under the influence of the 
field E(t), does not play any role in the frequency region of interest in this 
work. Note also that this refers only to nonequilibrium effects since, due to 
the smallness of/3 ~ �9 E, changes in the equilibrium distribution are negligible. 

The property (6) o f J  I~ together with the assumption just made about 
the dipole moment operator leads to a number of simplifications in the 
formalism. For  this purpose a projector P which projects upon the part 
(A~)~=0 of an operator A, and its complement Q, are defined through 

e A  =- ~ }2, I ~ ) (~  L A I 3)<3 / ~(~o~, ~oB), Q = 1 - P (7) 
c~ B 
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where ] @ is an eigenstate o f / / .  It is a simple matter to establish the following 
properties of these projectors: 

PoP = J P  : pj(o)  = ~ 0 ) p ;  P~  = 0, Qg. = ~.; PL(ext)(t)P = 0 (8) 

These relations lead immediately to the decomposition of Eq. (2) into a pair 
of equations which are coupled only via the field term L(ext)(t): 

8tPfm(t)  + iPL(ext)(t) Qf(Z)(t) = j ( ~  (9) 

8~Qfm(t ) + iQL(ext)(t) fm(t)  = j ( Q f m ( t  ) _ f(o)fi~ . E(t)) (10) 

To first order in the electric field, Qf(ll( t)  can be obtained from Eq. (10) by 
omitting the second term on the left-hand side. This gives 

Qf(1)(t) = {exp[J( t  - to)]} Qf(1)(to) 

-- ds{exp[J( t  -- s)]} j f ( 0 ) ~  E(s) (11) 
to 

which can be used to calculate (in the impact approximation) collision- 
broadened line profiles since these quantities are related to t r[Qfm(t)]~.  
To the same order of approximation, Pf(Z)(t) vanishes provided that the 
system was in equilibrium when E(t) was switched on. Since the occupation 
probabilities of the various internal states are given in terms of averages over 
Pfm( t ) ,  it follows that these quantities are unaffected by the field to first 
order in E(t). This result is not surprising since it is in essence due to the 
assumption P~  = 0: Indeed, the situation is entirely analogous to the 
vanishing of the first-order Stark effect for molecules possessing a dipole 
moment operator having only off-diagonal (in internal energy) matrix 
elements. 

The second approximation to Pf(X)(t) is obtained by the substitution of 
Eq. (11) into Eq. (9). Now a nonvanishing result is obtained, in agreement 
with the phenomenological approach mentioned in the introduction where 
the radiation density, which is proportional to E 2, enters the theory. It is clear 
from the foregoing that at higher field intensities further approximations 
should be taken into account. Hence, in second approximation considering 
a system originally in equilibrium and with E(t) switched on adiabatically 
from t o = -- o% 

f(1)(--oo) = 0, E(--oo) = 0 (12) 

the resulting equation for P f m ( t )  becomes 

8~Pf(~)(t) -- iPL(exO(t) f~ d s ( e x p [ J ( t  --  s)]} Jf(~ . E ( s )  - -  j (~ 
(13) 
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with the (formal) solution 

pf(1)(t) = f t  ds{exp[j(o)( t _ s)]} iPL(eXO(s) 

• f f  du{exp[j(s -- u)]} j f (o) f l~ .  E(u) 
co 
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(14) 

3. M O D U L A T E D  S I N U S O I D A L  F IELDS 

In this section Eqs. (13) and (14) are considered for the case where E(t) 
consists of a linearly polarized monochromatic radiation field modulated 
by a function h(t), 

E(t) = E(cos cot) h(t) (15) 

Should h(t) also be sinusoidal, the overall situation would be simple. Actual 
spectrophones, however, make use of a mechanical chopping device and 
h(t), although still periodic in time, may contain many Fourier components. 
Due to the nonlinear nature of the problem, high-frequency components in 
the Fourier spectrum of h(t) may combine to contribute to a low-frequency 
component of Pfm(t).  Denoting the period of h(t) by ~,  this function can be 
represented as 

h(t) = ~ h.(f2/2zr)l/2 einm; h_. -~ h,, (16) 

It will be assumed in the following that co is much larger than f2, 

co >> f2 (17) 

This condition is always satisfied in actual experimental situations since 
there, co is of the order of a typical vibrational transition frequency whereas f2 
is varied through the range of the inverses of the vibrational relaxation times 
of interest. Now E(t) and L(e'm(t) can be written as 

+ c o  

E(t) = �89 Z (~/2~r)1/~ h~{exp[i(oJ + nf2)t] + exp[--i(co -- nf2)t]} (18) 

and 

+ c o  

L(ext)(t) = �89 (exO 
n ~ - - o o  

(s h.(exp[i(oJ -t- n~)t] + exp[--i(oJ -- nf2)t]} 

(19) 
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The introduction of these expansions into Eq. (14) gives Pfm(t )  as 

ef(a)(t) - (s ~ ~ h~h~{K(co 4- m22, co 4- nf2) q- K(co 4- mr2, --co 4- nD) 
f/b n 

+ K(--co + m.Q, co + ns + K(--co + m-Q, --co + n~2)} (20) 

with K(col, coz) defined by 

K(coz , toe) =_ f ds{exp[j(~ -- s)]} iPL (ext) exp(icozs) 

• du{exp[J(s -- u)]} Jf(~ �9 E exp(ico2u ) 
--co 

= i{exp[i(col 4- co2)tl}[--J C~ ~- i(col 4- co2)] - 1PL  (ext~ 

• ( - - J  + ico2) -1 jzf(~ E (21) 

In obtaining the final form for K(co~, coz), it has been assumed that there are 
no contributions from the lower limits in the two integrations. This pre- 
supposes some form of weak ergodicity for [exp(Jt)]  ~, i.e., 

lira tr f~~ ~- 0 
~ c O  

for certain A (and similarly for j (o)  instead of J ) .  This will in fact be the 
case whenever the assumption P~  = 0 is a valid one, since the only eigen- 
functions o f J  (~ a n d J  at the eigenvalue zero are the summational invariants 
(particle number, linear momentum, and the free-particle energy). 

Inspection of Eq. (21) shows that, due to the presence of the resolvent 
[_ j (o )  + i(co~ 4- co~)] -1, the first and last terms between the curly brackets 
in Eq. (20) may be neglected. For these two terms the resolvent is approxi- 
mately equal to (_j~o)  :~ 2ico) z and, since co is very large, it becomes 
negligible (rotating wave approximation). Hence Pfm(t )  can be reduced to 

§  4-oo 

Pfm(t )  = Z Z (.Q/27r) hmh.{exp[i(m + n) s  (~ + i(m 4- n)-Q] -1 
q9~=--co q ~ - - c o  

X kiPL(ext){[--j  4- i(--co 4- n(2)] -1 

4- [ - - J  4- i(co 4- nD)] -a} j f (0 ) f ig .  E 
-Ioo ,-l-c~ 

= (~Q/27r) ~ [exp(imf2t)](--~(o)4-im~2)-l(i/4)PL(ext)~ hm_.h. 

• { [ - - J  4- i(--co 4- n(2)] -1 4- [ - - j  4- i(co 4- n~)] -1} Jf(~ �9 n 
+co  

--= (f2/2~) ~ [exp(imf2t)]f~ (22) 
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in which the final line serves as a definition of fro �9 It follows that fro = fro(f2, co) 
obeys the equation 

Am = ( j l o ,  _ imf2)f  m (23) 

where 

+Qo 

Am(O, co) = --  (//4) PL  (ext) E hm-nhn{[ - J "  @ i(--co + n~"2)] -1 
~ = - - o o  

+ [ - - J  -t- i(co -+- nf2)] -z} Jf~~ �9 E (24) 

Equations (23) possess a solution since Am is orthogonal to the summational 
invariants. This result follows directly from the presence in Am of  L {ext). 
In fact, Eq. (23) has, apart from the term --imf2, the structure of the well- 
known Chapman-Enskog equations of kinetic theory [a similar situation was 
encountered in Ref. 3, Eq. (3.23)]. The time-dependent version of Eq. (23) 
for fro(t) = free i'~m is 

~Jm(t) = J(0)fm(t) --  e im~ A~,(Q, w) (25) 

In this equation, the final term on the right-hand side acts as a driving force. 
It is worth noting that, due to the dependence of Am on s'-2, the final result for 
the nonequilibrium pressure may become more complicated than in phenom- 
enological theories. To get an idea of what actually happens, consider the 
diagonal elements of the resolvents in Eq. (24). These quantities have the 
structure 

[~--1 + i(co~e _ co + n~2)] -1 (26) 

Here j (0)  has been replaced by the relaxation frequency (inverse relaxation 
time) ~--z, while the transition frequency c%~ = w~ -- coo has derived from 
the term --iL m. Since ~--z, being a measure for the width of the pressure- 
broadened vibrational line centered at co~, is proportional to the number 
density, it can be seen that for low densities a sharp peak occurs for co close 
to c%~ + nO: For this particular value of co but for other values of nf2, the 
mismatch between the frequencies will soon be large enough to make the 
expression (26) quite small. From this, it must be expected that Am(C2) will 
depend strongly on g2, thus making a monochromatic radiation field less 
useful for the determination of vibrational relaxation times than might have 
been expected. Experimentally, these vibrational relaxation times are deter- 
mined from phase-shift or amplitude measurements and, in the case of a 
monochromatic radiation field, the driving force itself already shows a 
phase shift and an amplitude depending on O. 

The situation is different, however, for a radiation source having a 
broadband spectrum of incoherent radiation. For such a case the overall 
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magnitude of f ro ( t )  is obtained by the integration of Eq. (22) over the band. 
In the event that the field strength does not vary appreciably over the band, 
the g2 dependence of Am is removed and the usual result, featuring the 
Einstein B-coefficient, is recovered. The actual calculation for this case is 
presented in Section 5. 

4. RATE E Q U A T I O N S  

For the purpose of further discussion it is convenient to write Pf(Z)(t) as 

p f m( t  ) = f(o)~(t) _~ f(o, ~ q~m(t) = f(o) ~ ~,,~(g2, ~o)e i ~  (27) 
m m 

Implicit in this form for Pf(1)(t) is the neglect of any possible vibration- 
rotation interactions since then the equilibrium Wigner function-density 
operator factorizes into separate translational, and vibrational parts, 

f(o) = n[exp(_flH(O))]/tr exp(_/3Hm)) = nf(Of(r)f(v) (28) 

and it follows from the form of (28) that necessarily qS~, = P~b m for each m. 
Now a suitable series expansion for ~m will be made and the corre- 

sponding expansion coefficients will be interpreted as certain macroscopic 
quantities. As usual in kinetic theory, a truncation of this expansion will be 
made in order to obtain a closed set of coupled moment equations known as 
the relaxation or rate equations. For the optic-acoustic effect the relevant 
macroscopic variables are the pressure (and hence the kinetic energy) and 
the populations of the various vibrational states. It has been assumed here 
that translation and rotation remain in mutual equilibrium so that the 
sum H (t+r) of the translational and rotational energies must be included in 
the series expansion instead of the translational energy H m alone. 

In what follows the inner product and norm defined by 

( A ,  B )  ~ 17 -1 tr fCmAB *, !l A ]] ~ (A, A)I/~ (29) 

and the equilibrium average defined by 

(A)o ~ n -1 trfI~ ~- (A, 1) (3o) 

will be extensively used. The (truncated) series expansion proposed is 

9o = fl(H~t+r) -- <H~t+rl)o), ~o~ = Y~ I ~5 (~  1 a(~o~, ~o,0, ~ > 0 ( 3 0  
~x 

from which cp~, k > O, is seen to be the projection onto the subspace spanned 
by the vibrational eigenstates with energy hw~,  with ho)k running through 

8 2 2 / 8 / 1 -  5 
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all vibrational energy eigenvalues for k = 1, 2, 3 ..... A direct calculation 
shows that the q~ are mutually orthogonal with respect to the inner product 
(29), their norms being given by 

![ ~~ II 2 ---  C ( v t + r ) / k  = f l~ ( (H(t+r) )  u - -  ( H ( t + r ) ) o e ) 0  

/I ~ I19 = x(~ ~ = g~[exp(--flhc%)]/~ exp(--/3hc%) 
(32) 

The quantity C~ t+r) is the sum of the translational and rotational specific 
heats per particle at constant volume, while x~ ~ is the equilibrium fraction of 
particles with vibrational energy h~ok, gk denoting the multiplicity of the 
level designated by k. 

The expansion for Cm now reads 

r D) = ~ a,~cpk : a .... k = d~k (33) 
k 

It is a simple task, now, to obtain a physical interpretation of the various 
expansion coefficients a ,~ ,  First, defining the nonequilibrium temperature 
T -+- A T (where T is the equilibrium temperature occurring i n f  (~ by means 
of the expectation value of the translational energy, 

~nk(T q- A T) = t r f H  (t) (34) 

it is found that 

~nk(T + AT)  : trf(~ -F r H (t) 

. -  ~nkT + n ~, ~ a~kei'~ot(q~ , H (t)) 
r a  ~, 

= ~nkT(1 + ~ a~oe i'not) 
m 

Writing the fractional deviation A ~ as 

/1~ ~ A T / T  = ~ / l ~ ( t )  =- ~ ATone '~not (35) 
~,lz m 

it follows that 
a~o = A 2P,~ (36) 

and hence the contribution of the component at frequency [ mr21 to the 
overall relative deviation of the temperature from its equilibrium value is 
given by 

A~[~l(t) = a.,o e im~ @ a_,~o e -im~ (37) 
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The population density n~ = nxk of the fraction of particles with vibrational 
energy h~o~ is given by the expectation value of q~ (k > 0): 

n~ = nxk = t r f ~  = trf(~ + ~(t)] q% 

= .x o, (1 + ao e'm~ 9 
m 

Hence, defining the fractional deviation A ~  by 

Afr ~ (xk - -  x(k~ ~ = 2 d ~ , ~ ( t )  = 2 A~,~k e ~ m  (38) 
m 

it is found that the expansion coefficients a,~ are given as 

am~ = A ~  (39) 

and, analogously to Eq. (37), A~lmtk(t ) is given by 

A~l~l~(t ) -= a ~  e i~"~t + a-me e - i~at  (40) 

With the above results the expansion for f~  = f(o)r can be rewritten as 

\ 

(41) 
k > 0  

1 

Notice, however, that because of Eq. (5), the A~m~ are subject to the subsidiary 
condition 

2 x(k~ = 0 (42) 
k > 0  

Introduction of the function (41) into Eq. (23) and the consequent formation 
of moments with respect to each of the qgk's yields the set of equations 

[Ao - imX?(C~*+l)/k)l ~ + Z J o , ~ ,  = 0 
l>O 

(43) 
t~0 z %  + E A~ ~m~ - im~Z ~ ~ = W~ 

where 
j ~  = ( ~  , j ( o ) ~ ) ,  W~k = n -1 tr A.~k (44) 

Here use has been made of the fact that fro) can be pulled through j to) .  
Note that W~o vanishes since % does not depend upon the vibrational 
degrees of freedom, so that L(ext)~o = O. This may be expressed in another 
way by saying that the radiation field does not directly affect the translational 
(or rotational) degrees of freedom. 
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The time-dependent equations corresponding to Eqs. (43) are 

(C(~'+r)/k) ~,A~..(t) = JooZ~f;.(t) + E Jo, Ax.,.(t) 
/>0 

(45) 

The relaxation coefficients Jk~ which were introduced in Eq. (44) are not all 
independent and satisfy a number of auxiliary conditions. First, since 
Zk>0 q)~ = I, the identity operator, which is a summational invariant, it 
follows that 

E ackz = Y', f~ ,  = 0 (46) 
k>O ~>0 

This is simply a consequence of the conservation of particle number. Second, 
in a similar manner, the conservation of the total free-particle energy (trans- 
lational, rotational, and vibrational) results in the summational invariance of 
H (~ = H (t) + H (r) + H (v) and hence of ~b given as 

,~ = 90-F Z fih~kq~,~ (41) 
~>o 

This, in turn, leads to the relations 

A0 = (~h)~ E E ~,~J~, ,  %0 = J0~ = -~h Z ~,A~, 
k>O ~>0 ~>0 

From these results it follows that 

k > 0  

(48) 

a m = (0, 1, 1, 1 .... ), a (2) = (1,]?hcol,/3hoJ 2 .... ) (49) 

are eigenvectors of the matrix J ~  with eigenvalue zero. This means that, 
within the present approximation, a system consisting of particles with N 
different vibrational levels possesses at most N -- 1 different relaxation times 
(nonvanishing eigenvalues of Jza; k, l > 0). 

For the description of the optic-acoustic effect, the temporal behavior 
of  the nonequilibrium pressure 

A p ( t )  -~ p ( t )  - -  p = p ( t )  - -  n k T  = p A~P( t )  (50) 

is important. It is seen from the results obtained so far that A p ( t )  is the sum 
of  Fourier components at the frequencies mg?. From the first of Eqs. (43) it 
follows that A2P~ is related to the A~mz by 

A ' ~  = [imff2(c(~t+r)/k)  - -  J0o] -1 • Jo~ A ~  (51) 
g>o 
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while elimination of A 5Pro from the remaining equations results in 

irna~x(k ~ A ~ m k  ~ ~ Kkz(ms  A~,~ t  -? Wm~ 
g 

where 

(52) 

K A m n )  = J ~  + ~o[im~(C~'+r)/k) - ~o1 -~ Jo~ (53) 

These equations give a complete description of the optic-acoustic effect. 
In practice, some further simplifications usually occur. For example, the 
magnitudes of some of the Jk~ can be quite different from those of the 
remaining ones: This would allow a perturbation treatment of the equations. 
Moreover, under the usual experimental conditions it is often the case that 
only one W,,e is nonvanishing. 

The present form of the rate equations (52) deviates from that customarily 
given due to the presence in Eq. (53) of the second term on the right-hand 
side. At high frequencies ~2 this term as well as A~Pm vanishes: This is con- 
sistent with the fact that the translational and rotational degrees of freedom 
are no longer able to follow the rapid fluctuations in the populations of the 
vibrational levels. 

5. B R O A D B A N D  R A D I A T I O N  F I E L D S  

This section deals with the case when the driving force Wmk introduced 
in Eq. (44) arises from a broadband radiation field. In order to maintain 
a simple notation, the specific case of linear molecules will be considered: 
The rotational quantum numbers are here J and M. For more complicated 
molecules the extension is straightforward but of a greater notational 
complexity. 

Within the present context only that part of a vibrational band is of 
interest for which the rotational levels have a significant equilibrium popula- 
tion. Thus, for a specific transition frequency 

cokju ,  = o%s - oozs, , A J  = O, •  

J and J '  must remain smaller than a given maximal value. The radiation field 
is now required to extend at least over this part of the band with a constant 
intensity. In particular, it covers each (collision-broadened) individual line 
in this part of the band. The quantities Am, as defined by Eq. (24), will be 
written as 

A~,~ = - - k i L ( e x t ) ~ - ( f f - ) f ( ~  " E -~ - - ~ i P L ( e x t V r 1 7 6  " E (54) 
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where 

o ~ ( J )  = ~ hm_.hn{[- -J  + i ( - -w q- nO)] -~ + [ - - J  -k i(r -+- n~Q)l-~}J 
~z 

(55) 

The final equality of Eq. (54) follows from the fact that f(0) can be pulled 
through ~ ( j )  and that the operation of taking the Kubo transform com- 
mutes with J and hence with o~-(j). Expression (44) for W~.e when written 
out is 

Wm,~ = n -~ tr Amq~k 

= _ kin-1 tr{(L(e~vf(0)/3[~(j)~]~ �9 E) ~ }  

-= ~i(nh) -1 tr{(l~ �9 Ef(~ ~] ~" E -fI~ �9 E~"  E)~0e} 
(56) 

which can be simplified by insertion of the relation ~ q0 t = I in the following 
way: 

1 
i(nh) -1 tr I~" E ~ ~o~fc~ �9 Eq~k W,~,~ = - ~ 

f(~ �9 E Z q ~ "  E ~ }  

_ 1 iE2(nh)_ 1 ~ trf(O)fl(o~.l~)~ " { q % ~  _ ~(p~} 
12 

= Z W~,~ (57) 

Here use has been made of the isotropy of J and o~( J )  to reduce the tensorial 
dependence on E to a scalar one on E 2. Upon evaluation of the trace, the 
following result for Wm,~ is obtained: 

Wm,~ -= (i/12nh 2) E 2 f dp E ~ (f~(~) -- f~9)s')( ~ -- C%'s') -1 
otJM c~ ' J 'M"  

• (~ '~LJ. ,~ 'J 'M" " ~, j ,M, ~jM{8(o~,, ~o~) ~(~o~, ~o3 

- -  ~(~%,, o~3 ~( ,o~ ,  o~ ) }  

---- (i/12nh ~) E z f dp Z ~ ~ (~ , ,  0%) ~(co~,,, w~)(f~ (~ _ J~'J'Jr(~ 
c J M  ~x ' J 'M"  

x (~%~ - ~o~.~,)-~{~M,~,~,~, �9 ( ~ - ~ L ' . ' ~ ' , ~ .  

- ( ~ - ~ ) ~ . ~ , j , ~ ,  �9 ~ ,~ ,~ ,  ~ }  (58) 



Kinetic Theory o! Vibrational Relaxation in a Radiation Field 71 

where 

f(•) ~ (t), , ~(r) r = nJ {.~)JYM,JMje~a (59) 

I f  it is now assumed that the radiation field is of the broadband type in 
the sense mentioned previously and is centered about ~ok~ = o~ -- oJ~, the 
overall strength of Wm,k~ is obtained by integration over ~o according to 

E2 ,~ (J )  ~ f Y ( J ,  co) 8zrp(v) dv  = f ~ ( J ,  co) 4I(oJ) doJ 

4I(wk~) fb~na ~-(J' ~) doJ (60) 

In Obtaining the final approximated result, the field intensity I = I(o~k~) has 
been assumed to be constant over the band. Since the integral over the band 
of  ~ = ( j ,  co) reduces to 

l N' and dr'~ -~- i(oJkZ -- CO -k mQ)] -1 ~ O, c%~ > 0 (61) 
wkz < 0 

it follows [e.g., by making the approximation (26)] that 

E2~(J) ~ 4~r1~, h,~_nhn(i/h)[H,...]_ (62) 
n 

where the small dissipative part in of due to jl01 has been neglected as 
compared with the commutator term (with magnitude ~ok~). Substitution of 
this result into Eq. (58) yields 

W~.~ = (2~I/3h 2) ~,, h~-nhn f dp ~ ~ 8(c%, ~ok) 3(c%,, oJz) 
n a Y M  a ' Y ' M "  

x ( y 3  / ,-~o~,, - -  ]~,'.r ) I.tJM,~," J' M" " g'~" J' M' ,~JM 

= (2,~I/3h~) Z h . . . . .  h.(x~? - xl  ~ l ffk~ 12 
n 

(63) 

The final form of this equation follows from the factorization 

(v) (r) 
~JM,~'J'M' m ~6~ ,~jM,j, M, 
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so that 

a d M  a ' J ' M '  

- Z ~ ~ (o)~(o) (o~,.(o>, (,~) l ~ - tx~ j ~  - x~ :~ ,  ) ~ ( ~ , ~ ,  o,~) 8 (~ ,~ , ,  0 ,3  I ~ '  
cxJM o / J "  M '  

(r) (r) 
X ~LjM,j" M" ~ [JLj'M',j M 

(o) (oL (~) is = tx~ - -  x~ ) ~ ~(~o~, ~o~) ~(~,~,, ~ ) [ ~ ,  
&a p 

X E E ,40)(r) (r) Ys IZm,J'M''  g'S'M',JM (64) 
J M  J ' M '  

From this, I Izk~ [3 is seen to be the square of the dipole moment matrix ele- 
ment for the transition k +-~ l, summed over the degenerate substates with 
nonvanishing dipole moment matrix elements (if any) and Boltzmann- 
averaged over the rotational fine structure. 

6. D I S C U S S I O N  

A microscopic derivation of the rate equations governing the optic- 
acoustic effect has been given. The set of rate equations obtained for a many- 
vibrational-level system, Eqs. (43) or (45), has been expressed in terms of the 
temperature fluctuations A2P~ arising from the ruth Fourier components of 
the modulating mechanical chopper employed in the spectrophone and the 
corresponding fluctuations A ~  of the fractional populations of the various 
vibrational levels (labeled by the subscript k). Since the treatment presented 
here has not employed the Einstein B-coefficient and is hence not restricted 
to broadband radiation fields, the equations are also appropriate to a 
description of laser-driven systems. One conclusion which may be drawn with 
respect to such systems is that no real advantage is obtained in the actual 
spectrophone experiments by employing a laser in order to excite the vibra- 
tional levels of interest. However, it is also clear from the present description 
that in the limit where no chopper is employed the absorption line for laser 
excitation can be studied. This absorption line will be of the simple Lorentzian 
type centered at the excitation frequency r 

As is shown in the appendix, the matrix elements of the collision operator 
between two vibrational states labeled by k and l [see Eq. (44)] can be written 
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in terms of rate coefficients k~, , , ,  associated with the transition of two 
molecules from the initial pair-state ]/ j)  to the final pair-state I ran) as 

= ( J ( ~  w )  , ( o ) ( o ) -  , ----- '~xT~ x,  tx~,.+~, + kk,-,.~z) 

(o) ( o ) . -  ' ( 6 5 )  - -  X r X s  ~Krs-+lcl  

where n is the number density of the gas. The calculation presented in the 
appendix has assumed nondegenerate vibrational levels: In the case of 
vibrational degeneracy, weight factors will occur in the vibrational part of 
the equilibrium distribution function and it becomes a fairly simple matter 
of bookkeeping to arrive at a more general result. The result (65) corresponds 
to that obtained by Brau. (6) The rate coefficients can, in turn, be expressed 
in terms of degeneracy-averaged collision cross sections (7) as (see the appendix) 

fo ~ a (o) k~j . . . .  = (8zr/m) dq q~;ez(q) 5(t~ q'mn) (66) 

where q is the magnitude of the reduced relative momentum of the colliding 
pair of molecules after a collision, f~rg[(q) is a Maxwell-Boltzmann distribu- 
tion function in the reduced relative translational energy, m is the mass of a 
colliding molecule, and 5(t~ is the degeneracy-averaged, 
j-averaged, and f - summed (total) cross section for the transition from pair 
state I qtj) to pair state I q'mn). 

The rate equations as expressed here are perhaps in a form unfamiliar 
to the experimentalist. For this reason it is useful to show that Eqs. (43) 
do indeed give rise to results which resemble those obtained by other authors 
who have employed phenomenological arguments. This is best illustrated by 
examining the simplest such system, that having two vibrational degrees of 
freedom in addition to translational and rotational degrees of freedom. 
Equations (43) give for this case 

2 

~=1 

2 

aCT;coA~,~ @ E ff'kzA"~,,~z- ima'-2x(~ = W,n.k, 
1=1 

k = 1, 2 (67) 

From the auxiliary condition (42), Ar 2 can be expressed in terms of A2,,,, as 

= ~ ~ ( 6 8 )  
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This, when employed with the relations (46) and (48), lead to a reduction of 
(67) to the equivalent formulae 

[(e~ -- E~) 2 J n  -- imE2C(~t+r)/k~] A'P~ - -  (e 1 - -  e2)(~Jx~ ~ A~.~ 1 = 0 (69) 

and 

(e~ -- %) Jl~ A~/' -- ( A j x ~  ~ A k m  -t- imDx~ ~ A~ m = --W~, 1 (70) 

the equation for k = 2 now being redundant (W,,,~ = --  W~,I).  The quantity 
AoD~ 1 can be eliminated between these two equations to give 

A i " ~ =  (~1 ~2) (0) ~ 2 (,+r) x[0) - -  - -  <flz(W~a/x2 )[m s (C~ / k s )  

�9 ( t + r )  (o)  
§ l m ~ ( C v  j l , / k B x ~  ) + (~1 - -  ~2) 2 x~~ (71) 

A rearrangement of the result (71) into complex exponential form gives 

A~'~ = [ - - (q  -- e2) W,~,~kB/irn~Cv] 

/ r ~ . . ( t + r ) . ~  .2e  (0) (0) . .~-  ,2 ,1 /5  ' (72) X {1 q- (mzzt_., IC.~) (x  I x 2 1~11) ) e-*~ 

where C, is the total heat capacity at constant volume C~ = -vc(t+r) q- -vC(V) 
and 9' is defined through 

.. ~ ( t + r ) _ ( o ) ~ ( o ) / r  p 
t a n  7 = - - , , t , ~ v  ~ 1  -a.2 / o e l l " ~ v  (73) 

with C(vV)/kB for the two-level system given by 

(v) (0) (0)~ 
Cv /kB - -  E2) 2 X 1 X2 [.Ea (74) 

(% ~ fihaJk). As has been mentioned already, the matrix element J n  can be 
expressed in terms of rate coefficients kij_~, according to Eq. (65) as 

i l l  (0) (0) . . . .  1 (0) (0) - - n x  1 x 2 1 .3K12_+11-~-k12~22)  ~ - - 1 -  x 1 x 2 (75) 

The negative sign is due to the fact that the collision operator j(o> is negative- 
definite and ~- is the relaxation time associated with the decay of the upper 
level. Notice that the processes represented by the rate coefficients appearing 
in Eq. (75) are all energetically inelastic, there being no elastic or resonant 
collision processes contributing to the decay. 

In most spectrophones a broadband radiation field is employed and 
only the fundamental chopper frequency is monitored: hence m in Eqs. (72) 
and (73) should have magnitude one. When this is allowed for and the results 
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combined with Eq. (37), AiP as would be observed in the standard experiment 
for a two-level system is given by 

AT(t)  = Bz11E.  hl- .h.(x~ ~ -- x~~ -- q)kB cos(.Qt -- 7, -- �89 
s?c~ 

with the Einstein B-coefficient B2~ being 

(76) 

B2a -- 2rr I/x21 12/3h 2 (77) 

The equations describing the optic-acoustic effect, developed from a 
microscopic kinetic equation, have been demonstrated to reduce in the two- 
level case to a form similar to that usually written down on the basis of 
phenomenological considerations. Microscopically derived rate equations 
bridge the gap between the fundamental kinetic equation governing the 
behavior of a polyatomic gas and the rate equations which are assumed as 
the starting point of the conventional phenomenological theories.(S~ A general 
set of coupled rate equations was developed because few polyatomic mole- 
cules have a small number of accessible vibrational levels. Despite this, it is 
sometimes possible in special cases to approximate the vibrational level system 
by a small number of levels (each of which consists of many strongly coupled 
levels). It is, for example, a reasonably straightforward exercise to particularize 
the general set of rate equations presented here [Eqs. (43)] to the case of a 
three-level system, the model frequently proposed and employed in the 
analysis <9) of spectrophone results for CO2. 

A P P E N D I X .  C O L L I S I O N  O P E R A T O R  M A T R I X  E L E M E N T S  I N  
T E R M S  O F  RATE C O E F F I C I E N T S  O R  
C O L L I S I O N  CROSS S E C T I O N S  

The linearized collision operator employed in this paper has the form 

j (0)r  _- (2~)~ h2 trl f alp1 dq'f~(~ tq~,[r + r tJ,q 

-- i(27r) 3 h 2 th  f dplf~(~162 § r 

- -  [q~(p) + r  t~q} 

and the collision operator matrix elements between vibrational levels 
represented by ~k and ~oz are given by Eq. (44). Utilizing the explicit form 
for the ~p's as given in Eq. (31) and noting that since qvk commutes w i t h f  (~ 
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the cyclic property of the trace can be employed to convert the latter part 
of the matrix elements, via the optical theorem, 

into a bilinear form. Then, upon converting to center-of-mass and relative 
coordinates and integrating out the center-of-mass momentum, the result 

, ( j ~ 0 , ~ ,  ~) = (2~) ~ h a tr trl ~ dq d e  f(~ + ~) 

(~01 ~ Sk  1 @ t~k l~ l  ) - t - -  tqq,tq,~} (11) 

emerges. Note t h a t f  (~ is given as the product (o) (o) offrel(q ) and f in t ,  wlthfint" (o) 
given in Eq. (59) as the product of the rotational and vibrational distribution 
functions, (o) and frel(q) given by 

f~!~ = (r T)-3/2 exp(--q~/mk T) 

Now, noting thatf(v]~ can be written in terms of the vibrational populations as 

fv(O) .to) 

with the x~ ~ having the property 

the trace over the vibrational states can be evaluated in Eq. (A1) to give 

n(j(o)q~.  %) (2rr)~ h~ trrOt, rot f d d ' ~(o)..~(o),(o) ~- ~rl q q Jrel~,q)JrotJl,rot 

• 2 2  (o) (o)- Xe~ Xeq_ q, OtOt 1 I tc/ct' I ~ / ~ 1 > < ~ 1  I "i" tq'~ l ~i) 

• {~(o~, o~) ~(o~, ~o~) + ~(o~, ~o,3 ~(~%, ,o3 

- ~ ( ~ ,  o~) G~ - ~ ( ~ ,  ~o~) 6(~o~, ~o3} (A2) 

If  the rate coefficient k~c,~B ~ is defined as If the rate coefficient k~c,~B~ is defined as 
f . . . .  (o)- ~ ~(o) ~r(o) k ~ z  = (2zr) 4 fiz tr r~ tr r~ aq aq Yrel~qJYrotJl,rot 
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Eq. (A2) can be expressed as 

(o) (o)- ~3t w n(g(~ ~,) = ~ ~ x~ x=~ G~+Ba~. , ~, o~) ~(oJ=, o~3 
aa 1 B~z 

+ ~(~a, ~ )  ~(~,  ~)  - ~(o~, ~ )  G~ 

- ~ ( o ~ ,  ~o~) ~(~, ~)} (A4) 

ka~i+~ ~ - -  (2w) 4 [i 2 
Yd'diJl" 

For the case in which there are no degeneracies, and utilizing the symmetry 
properties 

(o) (o)- (o) <o)- (A5)  kij+mn : kji+nm , Xl X/ Kij+mn : X m X n Kmn+ij 

of the k's, the expression given in Eq. (A4) can easily be reduced to that given 
in Eq. (65). 

The trace over the rotational states appearing in Eq. (A3) can be expressed 
a s  

do' ,~(0)+=~ , c ( r o t ) z - ( r o t )  
f dq , j r e l , q ) j j  Jh  ~ (q---m + e~j 

q,2 ) 
-? Gdl  --  m --  @/  --  Eedd [ (~Jme~lJlml tq~, i ~J'm'f l lJi 'ml '}l  2 

(A6) 

This can be expressed, instead, in terms of the collision cross section defined 
by< v ) 

cr(qe~jmo~ljKnz -+ q' flj 'm' f l l j l 'ml ' )  =~ }( 2 rr)4h2m~( q' / q ) 

• l (~jm~ajlmz l t~q" [ f l j 'm' f l l j l 'ml '} l  ~ 
(A7) 

where q' is understood to be obtained from Eq~5,~%q,,~ 1 = Eq,~/m,~ddml,. 
Since f<rot) does not depend on the m quantum number, it is possible to 
employ directly the degeneracy-averaged cross section defined through 

(2j + 1)(2il q- 1)5(qe~jcc~j~ ~ q'flJ'fllJl') 

=~ ~ a(qc~jrno~ljlm 1 -+ q'13j'm'13ajl'nh') (AS) 

~Tb ' qT'~ l t 

Making use of Eqs. (A7) and (AS), and performing the integration over the 
magnitude of q', Eq. (A5) becomes 

2 
/~'~0r 1 : m ~ j~l,jl t f dq fr ( :~(q)  gJg,lq~<~~ + q t~J l f l l J l ' )  (A9) 
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where the cross section entering is now the total cross section 

a(t~ ~ q't3j'fllj~') = f d~q, 5(q~jo~lj~ --* q'13J'l~zjz') (AIO) 

Notice that the gj represent the fractional rotational populations within a 
given vibrational state and so obey the relation ~ gj = 1. If, now, a j-  
averaged and j ' - summed cross section defined as 

a(t~ -+ q'[3130 = ~ ~ gjgjy(t~ 1 -+ q'fij'[3zjl' ) (Al l )  
JJz YSI" 

is introduced, the expression given in Eq. (66) is obtained. 
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